Abstract
This paper is concerned with the spatial propagation of bistable nonlocal dispersal equations in exterior domains. We first obtain the existence and uniqueness of an entire solution which behaves like a planar traveling wave front for large negative time. Then, when the entire solution comes to the interior domain, the profile of the front will be disturbed. However, the disturbance is local in space for finite time, which means the disturbance disappears as its location is far away from the interior domain. Furthermore, we prove that the solution can gradually recover its planar wave profile uniformly in space and continue to propagate in the same direction for large positive time provided that the interior domain is compact and convex. Our work generalizes the local (Laplace) diffusion results obtained by Berestycki et al. (2009) to the nonlocal dispersal setting by using new known Liouville results and Lipschitz continuity of entire solutions due to Li et al. (2010).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.