Abstract

<p style='text-indent:20px;'>This paper is concerned with propagation phenomena for an epidemic model describing the circulation of a disease within two populations or two subgroups in periodic media, where the susceptible individuals are assumed to be motionless. The spatial dynamics for the cooperative system obtained by a classical transformation are investigated, including spatially periodic steady state, spreading speeds and pulsating travelling fronts. It is proved that the minimal wave speed is linearly determined and given by a variational formula involving linear eigenvalue problem. Further, we prove that the existence and non-existence of travelling wave solutions of the model are entirely determined by the basic reproduction ratio <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{R}_{0} $\end{document}</tex-math></inline-formula>. As an application, we prove that if the localized amount of infectious individuals are introduced at the beginning, then the solution of such a system has an asymptotic spreading speed in large time and that is exactly coincident with the minimal wave speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.