Abstract

It is well known that turbulence can cause fluctuations in the resulting sound fields. In the issue of wind turbine noise, such effect is non-negligible since either the inflow turbulence from nearby turbine wakes or the atmospheric turbulence generated by rotating turbine blades can increase the sound output of individual turbines. In this study, a combined approach of the Finite Element Method (FEM) and Parabolic Equation (PE) method is employed to predict the sound levels from a wind turbine. In the prediction procedure, the near field acoustic data is obtained by means of a computational fluid dynamic program which serves as a good starting field of sound propagation. It is then possible to advance wind turbine noise in range by using the FEM/PE marching algorithm. By incorporating the simulated turbulence profiles near wind turbine, more accurate predictions of sound field in realistic atmospheric conditions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call