Abstract

We use the CRPropa code to simulate the propagation of ultra high energy cosmic rays (with energy $\geq 10^{18} \rm eV$ and pure proton composition) through extragalactic magnetic fields that have been simulated with the cosmological ENZO code.We test both primordial and astrophysical magnetogenesis scenarios in order to investigate the impact of different magnetic field strengths in clusters, filaments and voids on the deflection of cosmic rays propagating across cosmological distances. We also study the effect of different source distributions of cosmic rays around simulated Milky-Way like observers. Our analysis shows that the arrival spectra and anisotropy of events are rather insensitive to the distribution of extragalactic magnetic fields, while they are more affected by the clustering of sources within a $\sim 50$ Mpc distance to observers. Finally, we find that in order to reproduce the observed degree of isotropy of cosmic rays at $\sim $ EeV energies, the average magnetic fields in cosmic voids must be $\sim 0.1 \rm \ nG$, providing limits on the strength of primordial seed fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.