Abstract

The propagation of transverse spatial correlations of photon pairs through arbitrary first-order linear optical systems is studied experimentally and theoretically using the fractional Fourier transform. Highly correlated photon pairs in an Einstein-Podolsky-Rosen-like state are produced by spontaneous parametric down-conversion and subject to optical fractional Fourier transform systems. It is shown that the joint detection probability can display either correlation, anticorrelation, or no correlation, depending on the sum of the orders $\ensuremath{\alpha}$ and $\ensuremath{\beta}$ of the transforms of the down-converted photons. We present analytical results for the propagation of the perfectly correlated EPR state and numerical results for the propagation of the two-photon state produced from parametric down-conversion. We find good agreement between the theory and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.