Abstract

This paper presents a theoretical study on propagation of torsional surface waves in a homogeneous viscoelastic isotropic layer with Voigt type viscosity over an inhomogeneous isotropic infinite half space. The non-homogeneity in half space is assumed to arise due to exponential variation in shear modulus and density. A closed-form solution has been obtained for the displacement in the layer as well as for a infinite half space. The dispersion and absorption relations for an torsional wave under the assumed geometry have been found. Numerical results are presented for propagation characteristics in terms of a number of non-dimensionalized parameters and have been produced graphically. This study investigates the effect of various parameters, namely non-homogeneity parameter, internal friction, the layer width and complex wave number on dissipation function and phase velocity of the torsional wave. Results in some special cases are also compared with existing solutions available from analytical methods, which show a close agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call