Abstract
The quantum hydrodynamical model is employed to investigate the nonlinear properties of the quantum dust acoustic waves in a magnetized dusty plasma composed of inertialess electrons, ions, and mobile positive/negative charged dust particles. For this purpose, a quantum Zakharov–Kuznetsov equation is derived and the basic features of the electrostatic excitations are investigated by applying the direct method. It is found that positive and negative bell-shaped solitary pulses become explosive pulses depending mainly upon the angles of propagation and dust polarity. Furthermore, the effects due to nondimensional quantum parameter and the external magnetic field are examined on the width of the quantum dust acoustic solitary pulses. The relevance of the present results to semiconductor quantum wells is mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.