Abstract

This paper presents the propagation longitudinal nonlinear plastic stress in thin semi-infinite rod or in wire. The rod is characterized by a nonlinear strain hardening model within the scope a plastic strain. The modulus of strain hardening is a decreasing function of the strain. The frontal bar end is suddenly launching to the velocity V, and subsequently moves with this one. General solution of this boundary value problem of the Lagrangian coordinate (material description) and of the Eulerian one (spatial description) has been presented. There has been carried out the physical interpretation of the obtained results by means of Lagrangian and Eulerian methods. The results of this paper may be utilized in scientific researches and in engineering practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.