Abstract

Phosphofructokinase from Bacillus stearothermophilus (BsPFK) is a 136 kDa homotetromeric enzyme. Binding of the substrate, fructose 6-phosphate (Fru-6-P), is allosterically regulated by the K-type inhibitor phosphoenolpyruvate (PEP). The allosteric coupling between the substrate and inhibitor is quantified by a standard coupling free energy that defines an equilibrium with the Fru-6-P-bound and PEP-bound complexes on one side and the apo form and ternary complex on the other. Methyl-transverse relaxation-optimized spectroscopy (Me-TROSY) nuclear magnetic resonance was employed to gain structural information about BsPFK in all four states of ligation relevant to the allosteric coupling. BsPFK was uniformly labeled with 15N and 2H and specifically labeled with δ-[13CH3]-isoleucine utilizing an isotopically labeled α-keto acid isoleucine precursor. Me-TROSY experiments were conducted on all four ligation states, and all 30 isoleucines, which are well dispersed throughout each subunit of the enzyme, are well-resolved in chemical shift correlation maps of 13C and 1H. Assignments for 17 isoleucines were determined through three-dimensional HMQC-NOESY experiments with [U-15N,2H];Ileδ1-[13CH3]-BsPFK and complementary HNCA and HNCOCA experiments with [U-2H,15N,13C]-BsPFK. The assignments allowed for the mapping of resonances representing isoleucine residues to a previously determined X-ray crystallography structure. This analysis, performed for all four states of ligation, has allowed specific regions of the enzyme influenced by the binding of allosteric ligands and those involved in the propagation of the allosteric effect to be identified and distinguished from one another.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.