Abstract

The potential for neutrino telescopes to discover charged stau production in neutrino–nucleon interactions in Earth depends in part on the stau lifetime and range. In some supersymmetric scenarios, the next lightest supersymmetric particle is a stau with a decay length on the scale of 10 km. We evaluate the electromagnetic energy loss as a function of energy and stau mass. The energy loss parameter β scales as the inverse stau mass for the dominating electromagnetic processes, photonuclear and e +e − pair production. The range can be parameterized as a function of stau mass, initial energy and minimum final energy. In comparison to earlier estimates of the stau range, our results are as much as a factor of two larger, improving the potential for stau discovery in neutrino telescopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.