Abstract

Using the computational fluid domain for propagation of ocean waves have become an important tool for the calculation of highly nonlinear wave loading on offshore structures such as run-up, wave slamming and non-linear breaking wave kinematics. At present, there are many computational fluid dynamics (CFD) codes available which can be employed to calculate water wave propagation and wave induced loading on structures. For practical reasons, however, the use of these codes is often limited to the propagation of regular uni-directional waves initiated very close to the structure, or to investigating the properties and loading due to measured waves by fitting a numerical wave to a measured wave profile. The present paper focuses on the propagation of steep irregular and short crested wave groups up to the point of breaking. Indeed, this is challenging because of the highly nonlinear behavior of irregular wave groups as steepness increases and they approach the point of breaking. The complexity further increases with the introduction of short-crestedness requiring computation in a large 3-dimentional domain. Two CFD codes are used in this comparison study which are believed to be well conditioned for wave propagation, the commercial code ComFLOW (available through the ComFLOW JIP project) and the open-source code BASILISK. The primary objective of this paper to show the two CFD codes capability of recreating measured irregular wave groups, using the known linear wave components from the model test as input to fluid domain. Wave elevation is measured at several locations in the close vicinity of the focus point. The comparison is carried out for a selection of events with variation in steepness, wave spreading and wave spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call