Abstract

We investigate the linear and nonlinear sound propagations in a cigar-shaped superfluid Fermi gas with a large particle number. We first solve analytically the eigenvalue problem of linear collective excitations and provide explicit expressions of all eigenvalues and eigenfunctions, which are valid for all superfluid regimes in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover. The linear sound speed obtained agrees well with that of a recent experimental measurement. We then consider a weak nonlinear excitation and show that the time evolution of the excitation obeys a Korteweg de Vries equation. Different from the result obtained in quasi-one-dimensional case studied previously, where subsonic dark solitons are obtained via the balance between quantum pressure and nonlinear effect, we demonstrate that bright solitons with supersonic propagating velocity can be generated in the present three-dimensional system through the balance between a waveguidelike dispersion and the interparticle interaction. The supersonic bright solitons obtained display different physical properties in different superfluid regimes and hence can be used to characterize superfluid features of the BCS-BEC crossover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.