Abstract
In this paper we derive a propagation of smallness result for a scalar second elliptic equation in divergence form whose leading order coefficients are Lipschitz continuous on two sides of a C2 hypersurface that crosses the domain, but may have jumps across this hypersurface. Our propagation of smallness result is in the most general form regarding the locations of domains, which may intersect the interface of discontinuity. At the end, we also list some consequences of the propagation of smallness result, including stability results for the associated Cauchy problem, a propagation of smallness result from sets of positive measure, and a quantitative Runge approximation property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.