Abstract

The Polycomb group (PcG) proteins maintain stable and heritable repression of homeotic genes. Typically, Polycomb response elements (PRE) that direct PcG repression are located at great distances (10s of kb) from the promoters of PcG-repressed genes, and it is not known how these PREs can communicate with promoters over such distances. Using Class II mouse PRC core complexes (mPCCs) assembled from recombinant subunits, we investigated how PcG complexes might bridge distant chromosomal regions. Like native and recombinant Drosophila Class II complexes, mPCC represses chromatin remodeling and transcription. Interestingly, mPCC bound to one polynucleosome template can recruit a second template from solution and renders it refractory to transcription and chromatin remodeling. A Drosophila PRC core complex (dPCC) also is able to recruit a second template. Posterior sex combs (PSC), a subunit of dPCC, inhibits chromatin remodeling and transcription efficiently but requires assembly with dRING1 to recruit chromatin. Thus, repression and template bridging require different subunits of PcG complexes, suggesting that long-range effects may be mechanistically distinct from repression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.