Abstract

We study sound propagation in a uniform superfluid gas of Fermi atoms in the unitary limit. The existence of normal and superfluid components leads to appearance of two sound modes in the collisional regime, referred to as first and second sound. The second sound is of particular interest as it is a clear signal of a superfluid component. Using Landau's two-fluid hydrodynamic theory, we calculate hydrodynamic sound velocities and these weights in the density response function. The latter is used to calculate the response to a sudden modification of the external potential generating pulse propagation. The amplitude of a pulse which is proportional to the weight in the response function, is calculated the basis of the approach of Nozieres and Schmitt-Rink (NSR) for the BCS-BEC crossover. We show that, in a superfluid Fermi gas at unitarity, the second sound pulse is excited with an appreciate amplitude by density perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call