Abstract

We study propagation of phase space singularities for a Schrödinger equation with a Hamiltonian that is the Weyl quantization of a quadratic form with non-negative real part. Phase space singularities are measured by the lack of polynomial decay of given order in open cones in the phase space, which gives a parametrized refinement of the Gabor wave front set. The main result confirms the fundamental role of the singular space associated to the quadratic form for the propagation of phase space singularities. The singularities are contained in the singular space, and propagate in the intersection of the singular space and the initial datum singularities along the flow of the Hamilton vector field associated to the imaginary part of the quadratic form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call