Abstract
The interaction of linearly polarized light with photonic crystals based on bulk and thin-film synthetic opals is studied. Experimental transmission spectra and spectra showing the polarization state of light transmitted through opals are discussed. A change in polarization is found for waves experiencing Bragg diffraction from systems of crystallographic planes of the opal lattice. It is shown that the polarization plane of the incident linearly polarized wave at the exit from photonic crystals can be considerably rotated. In addition, incident linearly polarized light can be transformed to elliptically polarized light with the turned major axis of the polarization ellipse. Analysis of polarization states of transmitted light by using the transfer-matrix theory and homogenization theory revealed good agreement between calculated and experimental spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.