Abstract

In this paper we consider a bistable lattice differential equation with competing first and second nearest neighbor interactions. We construct heteroclinic orbits connecting the stable zero equilibrium state with stable spatially periodic orbits of period p=2,3,4 using transform techniques and a bilinear bistable nonlinearity. We investigate the existence, global structure, and multiplicity of such traveling wave solutions. We show that in a certain parameter range the p=2 patterns have a finite maximum propagation speed. Our analysis also shows that multiple solutions involving a p=4 pattern may coexist at some velocities. Numerical simulations suggest the stability of some of the obtained solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.