Abstract

The theory of step-index waveguides is well-established. Most practical slab waveguide structures have a graded-index profile. The basic properties of graded-index planar waveguide structures are similar to those of step-index waveguides with subtle differences. The most common types of graded-index slab waveguides are linearly and exponentially graded-index profiles. We here treat linearly graded-index slab waveguide. In this work, a three-layer waveguide structure with linearly graded-index film is considered. We assume three structures: the first structure comprises a left-handed material (LHM) cladding, the second structure contains a LHM substrate layer and the third has a LHM cladding and substrate. Closed-form expressions for electric and magnetic fields and the characteristic equation are derived. The three normalized parameters: the asymmetry coefficient (a), the normalized film thickness (V) and the normalized guide index (b) are used to study the dispersion properties of the proposed slab waveguide structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call