Abstract

Bessel beams have been increasingly used for their advantages of non-diffraction and long focal depth. In this paper, we studied the propagation of on-axis and off-axis Bessel beams in a gradient-index medium. By expressing a Bessel beam in integral form, the analytical expression of an on-axis, decentered, and tilted Bessel beam through a paraxial optical system is derived with the ABCD matrix method and Collins diffraction integral formula. Main lobe size and trajectory of the zeroth- and second-order Bessel beam are obtained, demonstrating that the Bessel beam is focused by the gradient-index medium and its main lobe trajectory is exactly the same as the corresponding geometrical ray for both the decentered and tilted Bessel beam. Effects of beam apodization are finally studied by the Fourier beam propagation method, showing that the side lobes of the Bessel beam vanish when the beam is focused inside the medium as only part of the beam enters the lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.