Abstract

Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.