Abstract
The present paper provides exact mathematical expressions for the high-order moments of spiking activity in a recurrently-connected network of linear Hawkes processes. It extends previous studies that have explored the case of a (linear) Hawkes network driven by deterministic intensity functions to the case of a stimulation by external inputs (rate functions or spike trains) with arbitrary correlation structure. Our approach describes the spatio-temporal filtering induced by the afferent and recurrent connectivities (with arbitrary synaptic response kernels) using operators acting on the input moments. This algebraic viewpoint provides intuition about how the network ingredients shape the input-output mapping for moments, as well as cumulants. We also show using numerical simulation that our results hold for neurons with refractoriness implemented by self-inhibition, provided the corresponding negative feedback for each neuron only mildly alters its mean firing probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.