Abstract

The dispersion properties of longitudinal leaky surface waves propagating under the periodic Al strip grating on lithium tetraborate (Li(2)B(4)O(7); LBO) are described theoretically and experimentally for applications of the mode to high frequency SAW devices. A theoretical method developed here is based on Floquet's theorem using space harmonics as an orthogonal function set and real boundary integral equations derived from the method of weighted residuals for a period of each region, i.e., substrate, metal, and free space. The boundary integral equations are solved by using the Galerkin procedure. The periodic strip gratings with both single-electrodes and double-electrodes are investigated, considering the convergency of the numerical computation for the number of the space harmonics. As a result, the propagation loss for shorted gratings was found to be relatively low in the thickness range of the Al strip below about 1% for the single-electrodes and 2% for the double-electrodes, although it greatly increases for a thickness over 2% for the single-electrodes and 3% for the double-electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.