Abstract

We consider the (2+1)-dimensional nonlinear Schrödinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank–Nicolson alternating direction implicit difference scheme, which can also be used to solve general boundary problems under the premise of ensuring accuracy. We use linear Fourier analysis to verify the unconditional stability of the scheme. To demonstrate the effectiveness of the scheme, we compare the numerical results with the exact soliton solutions. Moreover, by using the scheme, we test the stability of the solitons under the small environmental disturbances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.