Abstract

AbstractIn this paper, the band structures of Lamb waves in the two-dimensional phononic-crystal plates are calculated and analyzed based on the plane wave expansion method. The phononic-crystal plates are composed of an array of circular crystalline iron cylinders embedded in the epoxy matrix. Square lattice and triangular lattice are analyzed and discussed, respectively. For the square lattice, two complete band gaps exist, and a narrow pass band between the complete band gaps separates them apart. For the triangular lattice, a wide complete band gap existing with the ratio of gap width to midgap frequency Δω/ωm equal to 72% is found. Furthermore, the influence of the plate thickness is crucial for band structures of Lamb waves. Tuning plate thickness can shift the pass bands effectively, and band shifting causes the variation of the width of complete band gap and its opening and closure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call