Abstract

The plasma block (piston) with pressure P 1 is generated as a result of the nonlinear (ponderomotive) force in laser–plasma interaction. The plasma block can be used for the ignition of a fusion flame front in a solid density deuterium–tritium (DT) target by compressing the fuel that creates an ion shock propagating with velocity u ion− shock in the inside of a solid DT target. The ignition is achieved by creating an ion shock during the final stages of the implosion. We estimated the effect of an ion shock in solid DT target at an early stage with no compression and at the last stage with compression, where density increases by a factor of solid-state density. According to the theoretical model, a large target with a very thin layer of fuel (high-aspect ratio target) would be ideal to obtain the very strong shocks. Results indicate that the maximum compression even by an infinitely strong single shock can never produce more than four times the initial density of DT fuel. The results reported that the threshold ignition energy in a solid DT target is reduced by a factor of 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.