Abstract

An analytical expression for the average intensity of four-petal Gaussian beams in turbulent atmosphere is derived. Studies show that in turbulent atmosphere, the contour lines of four-petal Gaussian beams with lower order N evolve into a number of petals with the increase in propagation distance, the contour lines with higher order N can reserve four-petal distribution at longer propagation distance than that with lower order N. These properties are similar to those in free space. However, with further increases of the propagation distance, the contours lines in turbulent atmosphere are different from those in free space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.