Abstract

Propagation characteristic of femtosecond terawatt laser pulses in N2 gas with higher-order Kerr effect (HOKE) is investigated. Theoretical analysis shows that HOKE acting as Hamiltonian perturbation can destroy the coherent structure of a laser field and result in the appearance of incoherent patterns. Numerical simulations show that in this case two different types of complex structures can appear. It is found that the high-order focusing terms in HOKE can cause continuous phase shift and off-axis evolution of the laser fields when irregular homoclinic orbit crossings of the field in phase space take place. As the laser propagates, small-scale spatial structures rapidly appear and the evolution of the laser field becomes chaotic. The two complex patterns can switch between each other quasi-periodically. Numerical results show that the two complex patterns are associated with the stochastic evolution of the energy contained in the higher-order shorter-wavelength Fourier modes. Such complex patterns, associated with small-scale filaments, may be typical for laser propagation in a HOKE medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.