Abstract

Aims. The electron transport is investigated numerically after an electron transport model is deduced. Methods. This model for electron propagation considers global electric and magnetic fields, as well as local Coulomb collisions. A new way to handle the electron's pitch angle evolution by using a binary dice within the treatment of the Coulomb scattering is introduced. The conditions in the solar plasma are represented by average and commonly used models, such that numerical simulations can be performed easily. Results. The model for electron propagation finally obtained makes it possible to investigate how the Coulomb collisions act on the pitch angle, while electrons are transported through the solar plasma. Some chosen numerical results for different initial conditions are presented in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.