Abstract

Abstract Carbonate formations are very complex in their pore structure and exhibit a wide variety of pore classes. Pore classes such as interparticle porosity, moldic porosity, vuggy porosity, intercrystalline porosity, and microporosity. Understanding the role of pore class on the performance of emulsified acid treatment and characterizing the physics of the flow inside is the objective of our study. The study was performed using vuggy dolomite cores that represent mainly the vuggy porosity dominated structure, while the homogenous cores represent the intercrystalline pore structure. Core flood runs were conducted on 6 × 1.5 in. cores using emulsified acid formulated at 1 vol% emulsifier and 0.7 acid volume fraction. The objective of this set of experiments is to determine the acid pore volume to breakthrough for each carbonate pore class at different injection rates. In this paper, a novel approach to interpret the core flood run results using thin section observations, tracer experiments, SEM, and resistivity measurements will be presented. Thin section observations provide means to study the vugs size and their distribution, connectivity, and explain the contribution of the pore class in the acid propagation. Relating the rotating disk experiments of emulsified acid with dolomite to our core flood run results will be also conducted in order. The acid pore volumes to breakthrough for vuggy porosity dominated rocks were observed to be much lower than that for homogenous carbonates (intercrystalline pore structure). Also, the wormhole dissolution pattern was found to be significantly different in vuggy rocks than that in homogenous ones. Comparison of thin section observations, tracer results and the core flood runs results indicates that the vugs are distributed in a manner that creates a preferential flow path which can cause a rapid acid breakthrough and effective wormholing than those with a uniform pore structure. Rotating disk experiment results, demonstrating that the reaction of emulsified acid with dolomite is much lower than that with calcite, showed that the reaction kinetics played a role in determining the wormhole pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call