Abstract

The wavelength and the propagation length of the edge magnetoplasmons, running along the edge of a two-dimensional electron layer in a semiconductor quantum-well structure, are theoretically studied as a function of frequency, magnetic field, electron density, mobility, and geometry of the structure. The results are intended to be used for analysis and optimization of operation of recently invented quantum-well microwave spectrometers operating at liquid-nitrogen temperatures [I. V. Kukushkin et al., Appl. Phys. Lett. 86, 044101 (2005)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.