Abstract

The detonation wave propagation in plane channels filled with a stoichiometric hydrogen-air mixture at rest under standard conditions is numerically modeled with account for the actual kinetics of the chemical interaction. The calculations show that the stable cellular structure of the detonation wave formed in a plane channel with parallel walls is not always uniquely determined by its width. The effect of transverse walls and sharp expansion of the channel on the propagation of the cellular detonation wave is studied. The conditions of conservation and restoration of detonation are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call