Abstract
We study dynamics of dark solitons in the theory of the derivative nonlinear Schrödinger equations by the method based on imposing the condition that this dynamics must be Hamiltonian. Combining this condition with Stokes’ remark that relationships for harmonic linear waves and small-amplitude soliton tails satisfy the same linearized equations, so the corresponding solutions can be converted one into the other by replacement of the packet’s wave number k by iκ, κ being the soliton’s inverse half-width, we find the Hamiltonian and the canonical momentum of the soliton’s motion. The Hamilton equations are reduced to the Newton equation whose solutions for some typical situations are compared with exact numerical solutions of the Kaup-Newell DNLS equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.