Abstract

We present the discovery of two types of multiple-hump soliton modes in a highly dispersive optical fiber with a Kerr nonlinearity. We show that multi-hump optical solitons of quartic or dipole types are possible in the fiber system in the presence of higher-order dispersion. Such nonlinear wave packets are very well described by an extended nonlinear Schrödinger equation involving both cubic and quartic dispersion terms. It is found that the third- and fourth-order dispersion effects in the fiber material may lead to the coupling of quartic or dipole solitons into double-, triple-, and multi-humped solitons. We provide the initial conditions for the formation of coupled multi-hump quartic and dipole solitons in the fiber. Numerical results illustrate that propagating multi-quartic and multi-dipole solitons in highly dispersive optical fibers coincide with a high accuracy to our analytical multi-soliton solutions. It is important for applications that described multiple-hump soliton modes are stable to small noise perturbation that was confirmed by numerical simulations. These numerical results confirm that the newly found multi-soliton pulses can be potentially utilized for transmission in optical fibers medium with higher-order dispersions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call