Abstract

The architectures of normal faults at a divergent plate boundary in Iceland are examined by combining surface fault observations with cross-sectional studies at different structural levels to constrain a model of failure propagation. The structures of Holocene faults defining graben are analyzed to characterize the upper-most parts of ruptures. The shapes of faults resulting from growth and interaction of separate segments are used to better understand failure propagation inferred to occur in the intervening stages of displacement accumulation and lateral propagation. Pleistocene faults in volcanic sequences exhumed from 800 to 1000 m are analyzed to characterize deeper portions of failure that occurred beneath the central rift zone. Tertiary dikes exhumed from depths of 1300–1500 m are studied to infer how magma controls the failure initiation. Field studies in combination with a literature review indicate that the planar ruptures are likely to initiate at depth as magma-filled vertical fractures and lengthen upward and laterally. As failures propagate to higher crustal levels, they are likely to change into inclined normal faults. At near-surface levels, faults link with cooling joints and dilational fractures propagating downward from the surface. It is suggested that the inferred stages of fault propagation are characteristic for normal faults developed at spreading ridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call