Abstract
Barotropic (i.e., depth-uniform) coastal oceanic Kelvin waves can provide rapid teleconnections from climate and weather events in one location to remote regions of the globe. Studies suggest that barotropic Kelvin waves observed around Antarctica may provide a mechanism for rapidly propagating circulation anomalies around the continent, with implications for continental shelf temperatures along the West Antarctic Peninsula and thus Antarctic ice mass loss rates. However, how the propagation of Kelvin waves around Antarctica is influenced by features such as coastal geometry and variations in bathymetry remains poorly understood. Here we study the propagation of barotropic Antarctic Kelvin waves using a range of idealized model simulations. Using a single-layer linear shallow water model with 1∘ horizontal resolution, we gradually add complexity of continental configuration, realistic bathymetry, variable planetary rotation, and forcing scenarios, to isolate sources and sinks of wave energy and the mechanisms responsible. We find that approximately 75% of sub-inertial barotropic Kelvin wave energy is scattered away from Antarctica as other waves in one circumnavigation of the continent, due mostly to interactions with bathymetry. Super-inertial barotropic Kelvin waves lose nearly 95% of their energy in one circumpolar loop, due to interactions with both coastal geometry and bathymetry. These results help to explain why only sustained signals of low-frequency resonant barotropic Kelvin waves have been observed around Antarctica, and contribute to our understanding of the role of rapid, oceanic teleconnections in climate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.