Abstract

In this paper, we investigate the characteristics of astigmatic stochastic electromagnetic beams through oceanic turbulence. Taking the electromagnetic Gaussian Schell-model (GSM) beam as an example, the analytic expressions for the spectral density and the spectral degree of polarization of the beam propagating the oceanic turbulence are derived. It is indicated that the spectral density along the z-axis of the GSM beam in the oceanic turbulence is severely influenced by the source correlation properties, as well as by the sea-related parameters. We show that the characteristics of the spectral density along the x-axis, y-axis and z-axis of astigmatic electromagnetic GSM beams passing through the oceanic turbulence are qualitatively different. Furthermore, we find that as the astigmatic coefficient becomes larger, the maximum value of the spectral density along the z-axis increases rapidly and the width of the spectral density becomes shorter rapidly. Finally, the results have shown that different strengths of astigmatism have different effects on the spectral degree of polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.