Abstract

The propagation properties of anomalous vortex beams in strongly nonlocal nonlinear media are investigated. Two equivalent analytical expressions for the evolution of anomalous vortex beams are obtained. It is found that the input power plays a key role in the beam evolutions. Selecting a proper input power, the beam width can be broadened or be compressed periodically, even it can keep invariant during propagation. The beam order and the topological charge mainly influence the intensity evolution and the phase evolution, respectively. The evolution period, the beam width, the phase distribution and the intensity distribution are discussed in detail. The results can also be generalized to other equivalent physical systems, such as an optical fractional Fourier transform system or a medium with a quadratic graded refractive index distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call