Abstract

Abstract We carry out two-dimensional magnetohydrodynamic simulations of an ensemble of Alfvénic fluctuations propagating in a structured, expanding solar wind including the presence of fast and slow solar wind streams. Using an appropriate expanding box model, the simulations incorporate the effects of fast–slow stream shear and compression and rarefaction self-consistently. We investigate the radial and longitudinal evolution of the cross helicity, the total and residual energies and the power spectra of outward and inward Alfvénic fluctuations. The stream interaction is found to strongly affect the radial evolution of Alfvénic turbulence. The total energy in the Alfvén waves is depleted within the velocity shear regions, accompanied by the decrease of the normalized cross helicity. The presence of stream compression facilitates this process. Residual energy fluctuates around zero due to the correlation and de-correlation between the inward/outward waves but no net growth or decrease of the residual energy is observed. The radial power spectra of the inward/outward Alfvén waves show significant longitudinal variations. Kolmogorov-like spectra are developed only inside the fast and slow streams and when both the compression and shear are present. On the other hand, the spectra along the longitudinal direction show clear Kolmogorov-like inertial ranges in all cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.