Abstract
[1] We compare multipoint observations of an interplanetary shock’s interaction with the Earth’s magnetosphere on 29 July 2002 with results from global MHD simulations. The sudden impulse associated with the shock’s arrival initiates global ultralow‐frequency waves with periods from 2 to 5 min. We interpret four cycles of Bz oscillations with T= ∼3 min at Geotail in the postdawn magnetosphere as radial magnetopause oscillations. GOES 8, in the same late morning sector, observed compressional and toroidal waves with the same frequency at the same time. GOES 10, in the early morning sector, observed toroidal waves with a slightly lower period. We suggest that these observations confirm the mode coupling theory. The interplanetary shock initiates compressional magnetospheric waves which, according to our estimates, oscillate between the ionosphere and magnetopause and gradually convert their energy into that of standing Alfven waves. At the same time, Polar in the outer predawn magnetosphere observed strong velocity oscillations and weak magnetic field oscillations with a ∼4 min period. Global MHD models successfully predict these oscillations and connect them to the Kelvin‐Helmholtz instability which results in large flow vortices with sizes of about ten Earth radii. However, the global models do not predict the multiple compressional oscillations with the observed periods and therefore cannot readily explain the GOES observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.