Abstract

We investigated the propagation of a squeezed optical field, generated via the polarization self-rotation effect, with a sinusoidally modulated degree of squeezing through an atomic medium with anomalous dispersion. We observed the advancement of the signal propagating through a resonant Rb vapor compared to the reference signal, propagating in air. The measured advancement time grew linearly with atomic density, reaching a maximum of 11±1 μs, which corresponded to a negative group velocity of v(g)≈-7,000 m/s. We also confirmed that the increasing advancement was accompanied by a reduction of output squeezing levels due to optical losses, in good agreement with theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call