Abstract
Based on the generalized Huygens-Fresnel integral and the Hermite-Gaussian expansion of a Lorentz distribution, analytical expressions for the mutual coherence function, the effective beam size, and the spatial complex degree of coherence of a partially coherent Lorentz-Gauss beam through a paraxial and real ABCD optical system are derived, respectively. As a numerical example, the focusing of a partially coherent Lorentz-Gauss beam is considered. The normalized intensity distribution, the effective beam size, and the spatial complex degree of coherence for the focused partially coherent Lorentz-Gauss beam are numerically demonstrated in the focal plane. The influence of the spatial coherence length on the normalized intensity distribution, the effective beam size, and the spatial complex degree of coherence is mainly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.