Abstract

Pattern formation in reaction-diffusion systems is an important self-organizing mechanism in nature. Dynamics of systems with normal diffusion do not always reflect the processes that take place in real systems when diffusion is enhanced by a fluid flow. In such reaction-diffusion-advection systems diffusion might be anomalous for certain time and length scales. We experimentally study the propagation of a chemical wave occurring in a Belousov-Zhabotinsky reaction subjected to a quasi-two-dimensional chaotic flow created by the Faraday experiment. We present a novel analysis technique for the local expansion of the active wave front and find evidence of its superdiffusivity. In agreement with these findings the variance σ(2)(t)∝t(γ) of the reactive wave grows supralinear in time with an exponent γ>2. We study the characteristics of the underlying flow with microparticles. By statistical analysis of particle trajectories we derive flight time and jump length distributions and find evidence that tracer-particles undergo complex trajectories related to Lévy statistics. The propagation of active and passive media in the flow is compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.