Abstract

The features of 10-keV electron propagation through a cylindrical channel made of borosilicate glass are experimentally studied. Experimental results indicate that a fast electron beam can be controlled using tapered capillaries fabricated from the given material. The charge distribution formed inside the channel provides conditions under which no less than 20% of beam electrons pass through the channel without considerable energy losses even if the inclination angles exceed the geometric angle of transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.