Abstract

A ZnMgTe/ZnTe electro-optic (EO) waveguide has great potential to be utilized for practical applications. A low-dislocation ZnMgTe/ZnTe waveguide can be fabricated when the cladding layer thickness is below 20-fold the calculated critical layer thickness (CCLT × 20). To improve optical confinement, a waveguide with a thicker cladding layer or a higher Mg% should be considered. However, the device performance might be affected because of crystal quality deterioration since the lattice mismatch between MgTe and ZnTe was around 4.1%. In this study, optical confinement and propagation loss were examined by changing the dimensions of the ZnMgTe/ZnTe waveguide structure. The propagation loss, EO characteristics, and crystal quality of the fabricated waveguides were mainly studied. A waveguide with a cladding layer thickness of around 1.5-fold the 1/e penetration depth of the evanescent wave (dp1/e × 1.5, corresponding to CCLT × 100) showed better optical properties than other waveguides, although its interface defect density was reasonably high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call