Abstract

The influence of propagation on the nonperturbative high-harmonic features in long-wavelength strong pulse excited semiconductors is studied using a fully microscopic approach. For sample lengths exceeding the wavelength of the exciting light, it is shown that the propagation effectively acts as a very strong additional dephasing that reduces the relative height of the emission plateau up to six orders of magnitude. This propagation induced dephasing clarifies the need to use extremely short polarization decay times for the quantitative analysis of experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.