Abstract

We study the impact of possible spiral-arm distributions of Galactic cosmic-ray sources on the flux of various cosmic-ray nuclei throughout our Galaxy. We investigate model cosmic-ray spectra at the nominal position of the sun and at different positions within the Galaxy. The modelling is performed using the recently introduced numerical cosmic ray propagation code Picard. Assuming non-axisymmetric cosmic-ray source distributions yields new insights on the behaviour of primary versus secondary nuclei.We find that primary cosmic rays are more strongly confined to the vicinity of the sources, while the distribution of secondary cosmic rays is much more homogeneous compared to the primaries. This leads to stronger spatial variation in secondary to primary ratios when compared to axisymmetric source distribution models. A good fit to the cosmic-ray data at Earth can be accomplished in different spiral-arm models, although leading to decisively different spatial distributions of the cosmic-ray flux. These lead to different cosmic ray anisotropies, where even reproducing the data becomes possible. Consequently, we advocate directions to seek best fit propagation parameters that take into account the higher complexity introduced by the spiral-arm structure on the cosmic-ray distribution. We specifically investigate whether the flux at Earth is representative for a large fraction of the Galaxy. The variance among possible spiral-arm models allows us to quantify the spatial variation of the cosmic-ray flux within the Galaxy in presence of non-axisymmetric source distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.