Abstract

Analytical formula is derived for the propagation factor (known asM(2)-factor) of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam in free space and in turbulent atmosphere. In free space, the M(2)-factor of an EGSM beam is mainly determined by its initial degree of polarization, r.m.s. widths of the spectral densities and correlation coefficients, and its value remains invariant on propagation. In turbulent atmosphere, the M(2)-factor of an EGSM beam is also determined by the parameters of the turbulent atmosphere, and its value increases on propagation. The relative M(2)-factor of an EGSM beam with lower correlation factors, larger r.m.s. widths of the spectral densities and longer wavelength is less affected by the atmospheric turbulence. Under suitable conditions, an EGSM beam is less affected by the atmospheric turbulence than a scalar GSM beam (i.e. fully polarized GSM beam). Our results will be useful in long-distance free-space optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.