Abstract

The propagation formulae for the propagation factor (known as M2-factor) and beam wander of electromagnetic Gaussian Schell-model (EGSM) array beams in non-Kolmogorov turbulence are derived by using the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. The results indicate that the M2-factor and beam wander depend on the beam parameters and turbulence parameters, and the relative M2-factor has a maximum when the generalized exponent parameter α is equal to 3.1. Otherwise, the changes of the separation distances (x0, y0) have great influence on the relative M2-factor. The relative beam wander increases rapidly when 3<α<3.2; however, it increases slowly when 3.2<α<4. It is also shown that the beam spreading of EGSM array beams is more affected by turbulence than the root mean square beam wander.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call