Abstract

AbstractWe applied a novel three‐dimensional spectral analysis method to GPS‐TEC perturbation (GPS‐TECP) maps to study the propagation direction of daytime and nighttime medium‐scale traveling ionospheric disturbances (MSTIDs) over North America. By this method, we can automatically calculate the phase velocity spectrum and directionality of MSTIDs. We focused on the periods of high MSTIDs occurrence, namely, June–July 2006 and November–December 2006, to study nighttime and daytime MSTIDs. We divided North America into the west (100°–130°W, 25°–55°N) and east (70°–100°W, 25°–55°N) parts. Our results show that both daytime and nighttime MSTID propagations exhibit strong longitudinal variations as a function of local time and day‐to‐day variations. The power peaks of daytime MSTIDs are from 10:00–16:00 LT in the west part and 10:00–14:00 LT in the east part. The predominant propagation directions of daytime MSTIDs are southward (southeastward) in the west (east). The daytime local time variations demonstrate that the MSTIDs display directional change in the west part; however, a similar directional change is not very pronounced in the east part. The local time variations of nighttime MSTIDs shows the power peaks from 22:00–02:00 LT in the west and 20:00–00:00 LT in the east. We found that the predominant propagation direction in the west part is westward with a wider azimuthal band (∼210°–300°) than the east part (∼210°–240°). By comparing nighttime propagation directions between the western and eastern parts, we reached the conclusion that the magnetic declination angle affects the propagation direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.